Edmund Paweł Strzelecki by Paula Gucia, Zabór

Traveller, geologist and geographer; scientist of Australia, America; from 1853 a member of Royal Society in London. In 1834-43 he made some medical, geographical and geological discoveries.


Paweł Edmund Strzelecki

He was leading medical discoveries in USA and Kanada, there were discovered ex.  deposits  ore  copper (over  Lake Ontario); 1836-38 examin deposits in America South m.in. in Brazylii (Minas Gerais); there wasdiscovered gold in New South Wales.

Strzelecki maintained this discovery in secret on wish governor G. Gippsa, which feared a explosion of „gold fever’’;

1840 he first named a mountainSt. Kosciuszko in Australia  and discovered Land Gippsa; 1841-43 he was leading geological surveys in Tasmania.

Selected Writings (1960). Paul Edmund W. Słabczyński Strzelecki. Travel, discovery, work, Warsaw 1957; P.G. Clews Strzelecki’s Ascent of Mount Kosciuszko 1840, Melbourne 1973.

PZL.23 Karaś

The PZL.23 Karaś was a Polish light bomber and reconnaissance aircraft designed in the mid-1930s by PZL in Warsaw. It was the main Polish bomber and reconnaissance aircraft used during the Invasion of Poland.

File:Pzl23 karas.jpg

Design and development:

The aircraft was developed in 1931 to replace Breguet 19 and Potez 25 aircraft in the Polish Air Force. The main designer was Stanisław Prauss who based the design on a passenger transport project PZL.13 that was only a “paper” proposal. The design was of modern all-metal construction with wings built around light closed profiles instead of spars (introduced first in PZL.19). The P.23/I first prototype flew on 1 April 1934, followed by the second P.23/II prototype.

In the third P.23/III prototype of 1935, a pilot’s seat was raised and the engine was lowered to obtain a better view. This prototype was accepted for a production, with the name Karaś (in Polish – the crucian carp). The first series, PZL.23A was fitted with a Bristol Pegasus IIM2 radial engine of 670 hp (500 kW) produced in Poland under licence. Since this engine proved to be unreliable, the final variant PZL.23B was fitted with a newer Pegasus VIII of 720 hp (537 kW).

The aircraft was a low-wing cantilever monoplane of all-metal, metal-covered construction. The crew consisted of three: pilot, bombardier and a rear gunner. The bombardier’s combat station was situated in a gondola underneath the hull, where he could also operate an underbelly machine gun. The fixed undercarriage was well spatted, but despite a massive look, it was not suited for rough airfields. Bombs were carried under the wings: the maximum load was 700 kg (1,500 lb) (6 x 100 kg and 2 x 50 kg). The aircraft were equipped with one of the following engines: Bristol Pegasus IIM2 normal: 570 hp (425 kW), maximum: 670 hp (500 kW) – PZL.23A; Pegasus VIII normal: 650 hp (485 kW), maximum: 720 (537 kW) – PZL.23B. Regardless of the engine, the aircraft had a two-blade propeller.

The Bristol engines were licensed for use in Poland only, so for export purposes the Gnome-Rhône 14K was used in a variety of PZL designs. In this case the 14K-powered PZL.23, with some changes to the airframe, became the PZL.43 Karaś. Final export variant was PZL.23A, with 1,020 hp Gnome-Rhone 14N-01 engine. 52 PZL.43s were made in total, all for Bulgaria only. The new engine improved the aircraft’s performance considerably, maximum speed increased to 365 km/h.

In 1936, 40 PZL.23As were produced. Between late 1936 and February 1938, 210 PZL.23Bs were produced with the new engines. They were also known as Karaś A and B or Karaś I and II. All PZL.23s had military numbers from 44.1 to 44.250.Sometimes the aircraft is called the “PZL P.23”, but despite an abbreviation P.23 painted on a tail fin, the letter “P” was generally reserved for fighters of Pulawski’s design (like PZL P.11). In November 1936, one aircraft was shown at the Paris Air Show, where it was met with interest.

During this period, PZL developed the PZL.46 Sum, a new light bomber, partly based on the PZL.23 design, but only two prototypes were completed in 1938. There was also a single experimental variant of the Karaś, PZL.42, with double tail fins and a modified bombardier gondola, retractable into the fuselage.

Operational history:

Forty PZL.23As were delivered to the Polish Air Force in late 1936. Due to engine faults, their service ceiling was limited and they were used only in the training role, being fitted with dual controls. A total of 210 PZL.23Bs were delivered to the Air Force from 1937. They became the main armament of Polish bomber and reconnaissance “line squadrons”, in the 1930s replacing Breguet 19, Potez 25 and Potez 27 biplanes. By August 1939, there were 23 crashes, what was an average safety result.

By 1939, the aircraft was obsolescent. Its main deficiency was its low speed but a lack of manoeuvrability was also a problem (it was noted, that the maximum speed of the PZL.23B was 365 km/h, but it was forbidden to exceed 319 km/h due to dangerous flight characteristics). At the outbreak of World War II on 1 September 1939, during the invasion of Poland. Some aircraft were also used in wartime improvised units, 114 PZL.23Bs were deployed in combat units (a further 75 PZL.23B and 35 PZL.23A were in air schools, held in reserve or under repair). The PZL.23Bs were operational in five bomber squadrons (Eskadra Bombowa) of the Bomber Brigade and seven Army reconnaissance squadrons, each with 10 aircraft (other squadrons of the Bomber Brigade were equipped with PZL.37 Łoś). In addition two PZL.43A from the Bulgarian order were impressed into the Polish service in the 41st Squadron.

File:Pzl.23 3.jpg

On 2 September 1939, one PZL.23B of the 21st Squadron bombed a factory in Ohlau as the first bomb attack on the German territory. The PZL.23 bomber squadrons attacked German armoured columns, especially on 3 September 1939, while the main mission of Army squadrons was reconnaissance. The five squadrons of the Bomber Brigade delivered about 52-60 tons of bombs during the campaign, the Army squadrons added about a dozen tons of bombs as well.

Due to the type’s low speed, lack of armour and especially fighter protection, PZL.23s suffered high losses. Many were shot down by the German fighter aircraft, but they also shot down a few in return. Despite lack of armour, crews often attacked German columns from low level, making their aircraft vulnerable to AA fire. Some 20 aircraft crashed on rough field airfields. About 120 PZL.23s (86%) were destroyed in 1939, but only 67 due to direct enemy action. Only a small number were destroyed on airfields with the only successful Luftwaffe attack on Polish combat units on an airfield during the campaign occurring on 14 September, at Hutniki, against PZL.23Bs of the Bomber Brigade.

At least 21 PZL.23s were withdrawn in 1939 to Romania with 19 used by the Romanian Air Force against the USSR. Fifty PZL.43s and PZL.43As (two were delivered by the Germans) were used in Bulgaria for training until 1946, known as the “Chaika”. No PZL.23s were left in Poland after the war.

File:Pzl.23 2.jpg



Błyskawica submachine gun

The Lightning (Lightning / Flasher) was a submachine gun produced by the Home Army, or Home Army and the Polish resistance movement fighting the Germans in occupied Poland. A successful construction, it was probably the only bridge weapon designed and mass produced covertly in occupied Europe besides the Sten (British submachine gun)



In 1942 engineer Wacław Zawrotny proposed to the Armia Krajowa command that he and his colleagues prepare a project of a cheap, home-made machine pistol for use by the Polish resistance. Its main feature was its simplicity, so that the weapon could be made even in small workshops, by inexperienced engineers. The idea was accepted, and Zawrotny, together with his colleague Seweryn Wielanier, prepared a project of a sub-machine gun, soon afterward named Błyskawica (Polish for “lightning”). To allow for easier production, all parts of the weapon were joined together with screws and threads rather than bolts and welding, which were commonly used in firearm production ever since the 17th century.

The design was based on two of the most popular machine pistols of the era. The external construction with a retractable butt and magazine mounted below the gun was borrowed from the successful German MP-40. The internal design of the mechanism was modeled after the British Sten. Blow-back, with an open bolt, it offered good performance and high reliability. Unlike the British Sten (and its Polish clone called the Polski Sten) it employed a free-floating firing pin.

File:Błyskawica and other insurgent weapons.jpg

The documentation was ready by April 1943, and by September a prototype was ready. After extensive tests in the forests outside of Zielonka near Warsaw, the weapon was presented to the commanding officer of the KeDyw, August Emil Fieldorf, who found the design acceptable. In November the plans were sent to a number of workshops spread throughout occupied Poland and a serial production started. The name was coined after the three lightning bolts carved on the prototype by its designers, pre-war workers of the Elektrit company that used a similar logo.
Polish soldier firing a Błyskawica during the Warsaw Uprising

The production started in a workshop officially producing metal fence nets in Warsaw. After the tests of a prototype series of five pistols, the KeDyw ordered 1000, and later an additional 300. Until July 1944 and the start of the Operation Tempest roughly 600 pieces were built in Warsaw. During the Warsaw Uprising an additional 40 were built. It is also possible that the Błyskawica was also produced in small quantities outside of Warsaw.

File:Uprising defender.jpg


The Lacida (or LCD) was a Polish rotor cipher machine. It was designed and produced before World War II by Poland’s Cipher Bureau for prospective wartime use by Polish military higher commands.



The machine’s name derived from the surname initials of Gwido Langer, Maksymilian Ciężki and Ludomir Danilewicz and / or his younger brother, Leonard Danilewicz. It was built in Warsaw, to the Cipher Bureau’s specifications, by the AVA Radio Company.

In anticipation of war, prior to the September 1939 invasion of Poland, two LCDs were sent to France. From spring 1941, an LCD was used by the Polish Team Z at the Polish-, Spanish- and French-manned Cadix radio-intelligence and decryption center at Uzès, near France’s Mediterranean coast.

Prior to the machine’s production, it had never been subjected to rigorous decryption attempts. Now it was decided to remedy this oversight. In early July 1941, Polish cryptologists Marian Rejewski and Henryk Zygalski received LCD-enciphered messages that had earlier been transmitted to the staff of the Polish Commander-in-Chief, based in London. Breaking the first message, given to the two cryptologists on July 3, took them only a couple of hours. Further tests yielded similar results. Colonel Langer suspended the use of LCD at Cadix.

In 1974, Rejewski explained that the LCD had two serious flaws. It lacked a commutator (“plugboard”), which was one of the strong points of the German military Enigma machine. The LCD’s other weakness involved the reflector and wiring. These shortcomings did not imply that the LCD, somewhat larger than the Enigma and more complicated (e.g., it had a switch for resetting to deciphering), was easy to solve. Indeed, the likelihood of its being broken by the German E-Dienst was judged slight. Theoretically it did exist, however.


Mikołaj Kopernik

Nicolaus Copernicus (German: Nikolaus Kopernikus; Italian: Nicolò Copernico; English: Nicolaus Copernicus ;   19 February 1473 – 24 May 1543) was a Renaissance astronomer and the first person to formulate a comprehensive heliocentric cosmology which displaced the Earth from the center of the universe.


19 February 1473
Toruń (Thorn), Royal Prussia, Kingdom of Poland


24 May 1543 (aged 70)
Frombork (Frauenburg), Prince-Bishopric of Warmia, Royal Prussia, Kingdom of Poland


Mathematics, astronomy, canon law, medicine, economics

Alma mater     

Kraków University, Bologna University, University of Padua, University of Ferrara

Known for     

Heliocentrism, the Copernicus Law





Hiero II of Syracuse wanted to have a crown of pure gold. The goldsmith cheated and removed the pure gold and added the weight in silver. When Archimedes understood this, he put the gold and silver crown in the water and then he understood that the goldsmith had cheated Hiero II.

Equipment for weighing objects already existed at the time, but Archimedes now was happy that he could also measure their volume!

Bessy Karapataki and Elli Tzamakou, Grade 2, 2nd Junior High School of Paralia.


Archimedes was from Greece. He was born in 287 BC and died in 212 BC at the age of 75.

Archimedes was one of the best maths professors and he was an engineer, too. He was killed by a Roman soldier during the siege of Syracuse.

Archimedes was the person who said the famous word “Eureka!”. He said that because he noticed that the water level rose when he was in the bath. Then he understood that the volume of the water was displaced.

He wrote the first books on flat geometry and maths. He also invented lots of war machines. He helped the whole world with his discoveries!

George Ritsikalis, Demetres Proskefalas, and Rafael Bakoyiannis, Grade 2, 2nd Junior High School of Paralia

Polish mine detector

The Mine detector (Polish) Mark I was a metal detector for landmines developed during World War II in the winter of 1941–1942 by Polish lieutenant Józef Kosacki.

In the pre-war period the Department of Artillery of the Ministry of National Defence ordered the construction of a device that could be helpful in locating duds on artillery training grounds. The instrument was designed by the AVA Wytwórnia Radiotechniczna, but its implementation was prevented by the outbreak of the Polish Defensive War. Following the fall of Poland and the transfer of Polish HQ to France, work restarted on the device, this time intended as a mine detector. Little is known of this stage of construction as the work was stopped by the battle of France and the need to evacuate the Polish personnel to Great Britain.

There in late 1941 Lieut. Józef Kosacki devised a final project, based partially on the earlier designs. His discovery was not patented; he gave it as a gift to the British Army. He was given a “thank you” letter from the King for this act. His design was accepted and 500 mine detectors were immediately sent to El Alamein where they doubled the speed of the British 8th Army.[1] During the war more than 100,000 of this type were produced, together with several hundred thousands of further developments of the mine detector (Mk. II, Mk. III and Mk IV). Detector was used later during the Allied invasion of Sicily, the Allied invasion of Italy and the Invasion of Normandy. This type of detectors was used by the British Army until 1995.

An attempt was made to mount a version of the mine detector on a vehicle so that sappers would be less vulnerable. To this end “Lulu” (on a Sherman tank) and subsequently “Bantu” (on a Staghound armoured car) were developed. The detector mechanism was in non-metallic rollers on arms held away from the vehicle. When the roller passed over a mine, or a similar piece of metal, the roller it was under was signalled in the vehicle. Prototypes were built but never tried in combat…



Kerosene lamp

The kerosene lamp (widely known in Britain as a paraffin lamp) is a type of lighting device that uses kerosene (British “paraffin,” as distinct from paraffin wax) as a fuel. This article refers to kerosene lamps that have a wick and a tall glass chimney. The first description of a simple lamp using crude mineral oil was provided by al-Razi (Rhazes) in 9th century Baghdad, who referred to it as the “naffatah” in his Kitab al-Asrar (Book of Secrets). Modern versions of the kerosene lamp were later constructed by the Polish inventor Ignacy Łukasiewicz in 1853 Lviv, and by Robert Edwin Dietz of the United States at about the same time. The question regarding the primacy of these two inventors’ versions of the lamp remains unresolved.



Mikołaj Kopernik by Damian Schaumkessel, class 1a

Mikołaj Kopernik

File:Nikolaus Kopernikus.jpg

Nicolaus Copernicus (German: Nikolaus Kopernikus; Italian: Nicolò Copernico; Polish: Mikołaj Kopernik; in his youth, Niclas Koppernigk; 19 February 1473 – 24 May 1543)

was a Renaissance astronomer and the first person to formulate a comprehensive heliocentric cosmology which displaced the Earth from the center of the universe.

Copernicus’ epochal book, De revolutionibus orbium coelestium (On the

Revolutions of the Celestial Spheres), published just before his death in

1543, is often regarded as the starting point of modern astronomy and the

defining epiphany that began the scientific revolution. His heliocentric

model, with the Sun at the center of the universe, demonstrated that the

observed motions of celestial objects can be explained without putting

Earth at rest in the center of the universe. His work stimulated further

scientific investigations, becoming a landmark in the history of science

that is often referred to as the Copernican Revolution.

Among the great polymaths of the Renaissance, Copernicus was a mathematician, astronomer, physician, quadrilingual polyglot, classical scholar, translator, artist,Catholic cleric, jurist, governor, military leader, diplomat and economist. Among his many responsibilities, astronomy figured as little more than an avocation-yet it was in that field that he made his mark upon the world.


The oldest biography of Nicolaus Copernicus was completed on 7 October 1588 by Bernardino Baldi.

Nicolaus Copernicus was born on 19 February 1473 in the city of Thorn (Toruń) in Royal Prussia, part of the Kingdom of Poland

His father was a merchant from Kraków and his mother was the daughter of a wealthy Toruń merchant. Nicolaus was the youngest of four children. His brother Andreas (Andrew) became an Augustinian canon at Frombork (Frauenburg). His sister Barbara, named after her mother, became a

Benedictine nun and, in her final years (she died after 1517), prioress of a convent in Chełmno (Culm, Kulm). His sister Katharina married the businessman and Toruń city councilor Barthel Gertner and left five children, whom Copernicus looked after to the end of his life.

Copernicus never married or had children.

“Towards the close of 1542, he was seized with apoplexy and paralysis.” He died on 24 May 1543, on the day that he was presented with an advance copy of his De revolutionibus orbium coelestium.

Mother’s family:

Nicolaus’ mother, Barbara Watzenrode, was the daughter of Lucas Watzenrode the Elder and his wife Katherine (née Modlibóg). Not much is known about her life, but she is believed to have died when Nicolaus was a small boy. The Watzenrodes had come from the Świdnica (Schweidnitz) region of Silesia and had settled in Toruń after 1360, becoming prominent members

of the city’s patrician class. Through the Watzenrodes’ extensive family relationships by marriage, they were related to wealthy families of Toruń, Danzig and Elbląg (Elbing), and to the prominent Czapski, Działyński, Konopacki and Kościelecki noble families. The Modlibógs (literally, in

Polish, “Pray to God”) were a prominent Roman Catholic Polish family who had been well known in Poland’s history since 1271.[16] Lucas and Katherine had three children: Lucas Watzenrode the Younger, who would become Copernicus’ patron; Barbara, the astronomer’s mother; and Christina, who in 1459 married the merchant and mayor of Toruń, Tiedeman von Allen.

Lucas Watzenrode the Elder was well regarded in Toruń as a devout man and honest merchant, and he was active politically. He was a decided opponent of the Teutonic Knights and an ally of Polish King Casimir IV Jagiellon. In 1453 he was the delegate from Toruń at the Grudziądz (Graudenz)

conference that planned to ally the cities of the Prussian Confederation with Casimir IV in their subsequent war against the Teutonic Knights. During the Thirteen Years’ War that ensued the following year, he actively supported the war effort with substantial monetary subsidies, with

political activity in Toruń and Danzig, and by personally fighting in battles at Łasin (Lessen) and Marienburg (Malbork).He died in 1462.

Lucas Watzenrode the Younger, the astronomer’s maternal uncle and patron, was educated at the University of Krakow (now Jagiellonian University) and at the universities of Cologne and Bologna. He was a bitter opponent of the Teutonic Order and its Grand Master, who once referred to Watzenrode as “the devil incarnate.” 1489 Watzenrode was elected Bishop of Warmia

(Ermeland, Ermland) against the preference of King Casimir IV, who had hoped to install his own son in that seat. As a result, Watzenrode quarreled with the king until Casimir IV’s death three years later. Watzenrode was then able to form close relations with three successive Polish monarchs: John I Albert, Alexander Jagiellon, and Sigismund I the Old. He was a friend and key advisor to each ruler, and his influence greatly strengthened the ties between Warmia and Poland proper.

Watzenrode came to be considered the most powerful man in Warmia, and his wealth, connections and influence allowed him to secure Copernicus’ education and career as a canon at Frombork (Frauenberg) Cathedral.


Copernicus’ uncle Watzenrode maintained contacts with the leading intellectual figures in Poland and was a friend of the influential Italian-born humanist and Kraków courtier, Filippo Buonaccorsi. Watzenrode seems first to have sent young Copernicus to the St. John’s School at Toruń where he himself had been a master. Later, according to Armitage (some scholars differ), the boy attended the Cathedral School at Włocławek, up the Vistula River from Toruń, which prepared pupils for entrance to the University of Krakow, Watzenrode’s alma mater in Poland’s capital.Copernicus’ four years at Kraków played an important role in the development of his critical faculties and initiated his analysis of the logical contradictions in the two most polular systems of astronomy-Aristotle’s theory of homocentric spheres, and Ptolemy’s mechanism of eccentrics and epicycles–the surmounting and discarding of which constituted the first step toward the creation of Copernicus’ own doctrine of the structure of the universe.During his three-year stay at Bologna, between fall 1496 and spring 1501, Copernicus seems to have devoted himself less keenly to studying canon law (he received his doctorate in law only after seven years, following a second return to Italy in 1503) than to studying the humanities–probably attending lectures by Filippo Beroaldo, Antonio Urceo, called Codro, Giovanni Garzoni and Alessandro.As the time approached for Copernicus to return home, in spring 1503 he journeyed to Ferrara where, on 31 May 1503, having passed the

obligatory examinations, he was granted the degree of doctor of canon law. No doubt it was soon after (at latest, in fall 1503) that he left Italy for good to return to Warmia.

by Damian Schaumkessel kl. Ia


Dear friends and classmates,

Have you wondered where the title of our project comes from?

Well, can we tell you?

“Eureka” is a very important phrase that Archimedes said when he invented that people and things don’t sink in water. The historical phrase “Eureka” comes from the ancient Greek word that means “I have found it”.

Today we say “Eureka!” when we have an excellent idea or we have invented something important!


Andrew Skarpentzos-Kalyvas & Panayiotis Kanelakopoulos

Grade 2, 2nd Junior High School of Paralia

Our project’s title – Eureka!

Hello kids!

We are students of Grade 2, 2nd Junior High School of Paralia, and this year our project is called “Eureka”.

We’re sure that you wonder what “Eureka” means. So, we have written a text for you to understand the importance of this world-known word. Here it comes.

“Eureka” is a Greek verb which means “I have found it”. Although it’s just a phrase, there is a long story behind it.

It was first said by Archimedes, a Greek scientist, mathematician, engineer, inventor and astronomer (!), who was the king of Syracuse. He suddenly shouted “Eureka!” when he was taking a bath and noticed the water level rising. This meant that the volume of irregular objects could be measured with precision. He was so excited with what he had found that he leapt our of his bath and ran through the srteets of Syracuse naked.

Well, this is the story behind “Eureka!”. A world-known word expressed by an intelligent person, Archimedes. Nowadays, “Eureka!” is a word used by everyone who wants to express their excitement for something new they have discovered or invented.

Jenny Kipourgou, Angela Nikolaou, Chryssa Panagopoulou, & Mary Petroutsou

Grade 2, 2nd Junior High School of Paralia


Hello everyone!

We would like to talk to you a little about the title of our project.

One day, Archimedes, the king of Syracuse, asked the best artist in town to make a crown of gold. When the king took the crown there were rumours that the artist had replaced the gold with other metals.

The rumours came true because Archimedes wanted to have a bath and he discovered that the crown was floating. Consequently, the artist’s cheating was uncovered.

In the end, Archimedes shouted “Eureka! Eureka!”, which in Greek means “I have found it! I have found it!”

The Wreath of Amphipolis

Nicole Panayiotatou, Georgia Kalantzi, Mary Roboti, Mary Tourkodimitri, & Joanna Mitropoulou

Grade 2, 2nd Junior High School of  Paralia.

Leonardo Torres Quevedo


Here is one of our most important inventors, Leonardo Torres Quevedo, was the father of digital computers (and many other digital devices, almost magical at the time, as the laser pointer or typewriter Torres-Quevedo). Calculations performed independently (some of them quite complex). All scientific calculators down after the invention of Torres Quevedo, one of the great spanish mathematicians.

Àlex Pérez, 6th Salvador Espriu School. Badalona


Jan Szczepanik


Jan Szczepanik (born June 13, 1872 in Rudniki (near Mostyska), Austria-Hungary (Occupied Polish territory by Austria in 1772-1918) – April 18, died 1926 in Tarnów, Poland) was a Polish inventor.

Some of his ideas influenced the development of television, such as the telectroscope (an apparatus for distant reproduction of images and sound using electricity) or the wireless telegraph, which greatly influenced the development of telecommunications.

–         1897 Jan Szczepanik patented Telektroskop the device to transmit a moving color picture with sound at a distance.

He managed to create a bulletproof vest, silk fabrics from thin steel sheets. This invention brought Szczepanikowi fame, because he defended before the bombing of Spanish King Alfonso XIII, who in gratitude Szczepanik furnished to the highest state decoration. I just wanted to make Nicholas II, but for patriotic reasons Szczepanik refused to accept the medal, and the car gave him a gold watch studded with diamonds.

File:Jan Szczepanik.jpg

Marie Skłodowska Curie

Marie Skłodowska Curie (7 November 1867 – 4 July 1934) was a Polish–French physicist–chemist famous for her pioneering research on radioactivity. She was the first person honored with two Nobel Prizes—in physics and chemistry. She was the first female professor at the University of Paris. She was the first woman to be entombed on her own merits (in 1995) in the Paris Panthéon.[citation needed]

She was born Maria Salomea Skłodowska in Warsaw, in Russian Poland, and lived there to the age of 24. In 1891 she followed her older sister Bronisława to study in Paris, where she earned her higher degrees and conducted her subsequent scientific work. She shared her Nobel Prize in Physics (1903) with her husband Pierre Curie (and with Henri Becquerel). Her daughter Irène Joliot-Curie and son-in-law, Frédéric Joliot-Curie, would similarly share a Nobel Prize. She was the sole winner of the 1911 Nobel Prize in Chemistry. Curie was the first woman to win a Nobel Prize, and is the only woman to win in two fields, and the only person to win in multiple sciences.

Her achievements include a theory of radioactivity (a term that she coined), techniques for isolating radioactive isotopes, and the discovery of two elements, polonium and radium. Under her direction, the world’s first studies were conducted into the treatment of neoplasms, using radioactive isotopes. She founded the Curie Institutes: the Curie Institute (Paris) and the Curie Institute (Warsaw).

While an actively loyal French citizen, Skłodowska–Curie (as she styled herself) never lost her sense of Polish identity. She taught her daughters the Polish language and took them on visits to Poland. She named the first chemical element that she discovered “polonium” (1898) for her native country. During World War I she became a member of the Committee for a Free Poland (Komitet Wolnej Polski). In 1932 she founded a Radium Institute (now the Maria Skłodowska–Curie Institute of Oncology) in her home town, Warsaw, headed by her physician-sister Bronisława.



























Rutherford Ernest – a joke – Clara from Daleszyce

The photo from: http://www.scientific-web.com/en/Physics/Biographies/ErnestRutherford.html

It will be a good fun to learn about great scientists from a humorous point of view too. So, here is the joke I have heard: Rutherford Ernest (Do you know him? – a great physicist from New Zealand) asked one of his hard-working students in the lab:

–          Do you work so hard every morning?”

–          Yes, every morning –  proudly answered the young man.

–          But when do you think? – asked the scientist

Greetings from Daleszyce!

Hello! I am Clara. We want to say that we are very happy to work together on this project. However, it isn’t easy to write on the inventions and discoveries. We must study new vocabulary, but it will help us understand English better. We will also promote our Polish inventors and scientists! So, we are ready to work. Greetings from Daleszyce!